The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X X^2+2 1 1 1 1 X 0 X X^2+2 X X X 2 X X X X^2 X X 2 X^2 1 1 X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X^2 0 0 X^2 X^2 2 2 X^2 1 1 X 0 X X^2+2 X^2+X 0 X^2+X X^2+2 X+2 2 X^2+X+2 X^2 X+2 2 X^2+X+2 X^2 X 0 X^2+X X^2+2 X+2 0 X^2+X X^2+2 X+2 2 X^2+X+2 X^2 X X^2+X X X+2 X 2 X^2+X+2 X^2 X X^2+X X X+2 X 0 X^2+2 X^2+X+2 X 2 X^2 X X X^2+X+2 X X X 0 X^2+2 0 X^2+2 X^2 2 0 X^2+2 2 X^2 2 X^2 X^2+X X+2 X^2+X X+2 X^2+X+2 X X^2+X+2 X X^2+2 X^2 X^2 X^2+2 X^2 X^2 X^2 X^2 0 X^2+X X^2+X 0 0 2 2 2 0 0 2 2 2 0 0 0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0 0 2 2 0 0 0 2 2 2 0 0 2 2 2 2 0 2 2 0 2 0 2 2 0 0 0 0 0 0 0 2 2 2 0 0 2 0 2 2 0 2 0 0 2 2 0 2 0 2 0 2 0 0 0 2 generates a code of length 83 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 82. Homogenous weight enumerator: w(x)=1x^0+51x^82+144x^83+50x^84+1x^86+4x^90+4x^92+1x^100 The gray image is a code over GF(2) with n=664, k=8 and d=328. This code was found by Heurico 1.16 in 0.593 seconds.